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An SCC-type, metal AO-optimized molecular orbital model which treats all atoms (M, C, N, H) explicitly is tested and 
found to relate successfully the absolute configuration of d3  and d 6  M(en),3+ to the natural CD of the magnetically 
allowed 4T, and lT, excitations. The model is tested with complete multicenter operator matrices, L, V, and r, and 
with successively approximate ones. The CD rotational strength (R) calculations account for (i) the signs of the trigonal 
components E and A, (ii) the magnitude of R(’E) of h - l e l - € ~ ( e n ) , ~ ~  as known from crystal measurements, (iii) the mag- 
nitude of the net activity of the magnetically allowed parent T, and (iv) the sign of this net activity when operators L and 
I are used. Also, all features but the last one (iv) are accountable when the velocity dipole operator, V, is employed in 
place of the position operator, I. The model also rules out the presence of only the h-ob(hhh) isomer in solutions of h- 
C ~ ( e n ) ~ ~ ~  and points to the presence of mostly h-le1(6S6)€0(en),~*. On the other hand, the model cannot decide beyond~ 
this, Le., if and how much R-ob might be present. 

Introduction 
Efforts to relate the natural optical activity of transition 

metal complexes to their absolute configurations at or near 
the chromophore site have trailed behind the efforts expended 
in this direction for organic molecules. This situation exists 
in large part because (i) there are so many more inorganic 
chromophores, (ii) the large sizes (more atoms, electrons, 
orbitals) of complexes make it more difficult to derive 
molecular orbital (MO) coefficients, and (iii) there are greater 
complexity and expense in evaluating the immense number 
of operator (orbital angular momentum, L = L ,  + L ,  + L,, 
position or distance, r E X  + y  + z, and velocity dipole, V = 
a/ax + a& + a/az) integrals needed to compute the rota- 
tional strength, $, by mhans of the Rosenfeld equation, R = 
(e2/2mc)Im [(a IM lj).(j ILla)], forhwhich the electric dipole 
transition moment integral, (aleMlj), can be computed by 
means of either the distance operator or the velocity dipole 
operator.’ The present report is only the fourth occasion 
on which MO’s are employed for interpreting the CD of 
transition metal complexes. 

excitations, e.g. ,  to ‘T1 and 4T2 of M(en)3 (M = CrlI1 or 
Co”‘), obtained rotational strength by borrowing intensity 
from charge-transfer bands, but crystallographically deter- 
mined parameters had to be violated in order to make good 
predictions. The model treats the M-N u bonds but does 
not include carbon and hydrogen atoms of the Men rings; 
Le., dl activity derives from the MN6 fragment of M(en)3. 

Liehr’s u-bonding MO model3 was contemporary with 
that of Piper and Karipides. However, its application requires 
knowledge (very difficult to come by) of the dissymmetric 
directions of six a-hybrid orbitals at the nitrogen atoms 
pointing toward M in M(en)s. In addition, the MN6 portion 
of the molecule is treated incompletely, especially the opera- 
tor matrices, M and L, by the Liehr and Piper-Karipides 
models. Nonetheless, the work of a good many chemists4 
was stimulated by the insights of these workers, and this 
has been nicely summarized by Hawkins.’ 

In 1964 Piper and Karipides2 used a model in which “d-d” 

(1) H. Eyring, J .  Walter, and G.  E. Kimball, “Quantum Chemistry,” 

(2) A. Karipides and T. S. Piper, J.  Chem. Phys., 40, 674 (1964). 
(3) A. D. Liehr, J. Phys. Chem., 68 ,  665 (1964). 
(4) (a) J. Fujita and Y. Shimura in “Spectroscopy and Structure 

of Metal Chelate Compounds,” K. Nakamoto and P. J .  McCarthy, 
Ed., Wiley, New York, N. Y., 1968,  Chapter 3, and references therein; 
(b) R. G. Gillard in “Physical Methods in Advanced Inorganic Chem- 
istry,” H. A. H. Hill and P. Day, Ed., Interscience, New York, N. Y., 
1968, Chapter 5 ,  and references therein. Also see references in ref 5 .  

Wiley, New York, N. Y., 1964. 

In 1973 Strickland and Richardson6 refined the Piper- 
Karipides MO model by adding the -CH2 -CH2- portion of 
each en ligand in the form of a perturbing coulombic field. 
They included the MN6 portions of M(en)3 complexes for 
obtaining their Wolfsberg-Helmholz-like MO’s, and, the oper- 
ator matrices include one-center integrals, ( h ( M )  lo I x b w ) ) ,  
and a two-center, (xc(,N) 18 Ixd(N)), type of integral of this 
MN6 segment, where o stands for L and the distance operator 
1. 

The MO model of the present paper has the following 
features: (i) all atoms (M, C, H, N) of M(en)33” are treated 
explicitly; (ii) all atoms are allowed to interact whether they 
belong to the same or different Men rings, and the interaction 
is present in the operator matrices, M and L, and in the MO’s; 
(iii) the electric dipole transition moment matrix, M ,  is 
constructed completely using the distance, r, and velocity 
dipole, v ,  operators; (iv) the many-electron-state functions, 
which are made to be representative of the D3 point group, 
are found by avoiding the difficult calculation of energies 
of states but are constructed, instead, by taking advantage 
of the properties of the Oh point group 

(4A2gl<14T1g) = 0 

(‘Alg lt11T2g) = 0 

(v) multi-{ metal functions are employed with the 4s and 
4p basis orbitals overlap-optimized and orthogonal to the 
core; (vi) all u and 77 M-L and L-L’ interactions are allowed 
(Strickland and Richardson treated both in their MN6 frag- 
ment); (vii) the semiempirical MO’s employed here were 
derived by an SCC procedure which converges on the charges 
derived from the density matrix of MO’s in an orthonormal 
Lowdin A 0  basis. The general nature of this approach makes 
it suitable for “d-d,” charge-transfer , and ligand “internal” 
excitations. We explore the first of these here. 

The use of crystal field models has often been found suc- 
cessful for interpreting the CD activity of “d-d” excitations 
for M(en)3, and most of these uses have been described and 
documented in the order of their evolution by Hawkins.’ 
The recent efforts by Schaffer,’ Mason,’ R icha rd~on ,~  and 

( 5 )  C. J .  Hawkins, “Absolute Configuration of Metal Complexes,” 

(6) R .  W. Strickland and F. S. Richardson, Inovg. Chem., 12, 1025 

(7) C. E. Schaffer,Proc. Roy.  SOC., Sev. A ,  297, 96 (1968). 
(8) S .  F. Mason,J. Chem. SOC. A ,  667 (1971). 
(9) F. S .  Richardson, J. Phys. Chevn., 75, 692  (1971). 

Wiley-Interscience, New York, N. Y., 1971. 

(1973). 
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Caldwell and Eyring" and coworkers of the last expand this 
list of crystal field approaches, the first of these having used 
the angular overlap modification. The success of the earlier 
of these crystal field models depends to some extent on one's 
outlook; e.g., the 3 d 4 p  mixing of M ~ f f i t t ' ~ - l ~  and Pouleti4 
and 3 d 4 f  mixings of Piper and Kar ip ide~ '~  for C04en)~~"  
nicely predict, on the one hand, opposite signs for 'E and 'Al 
of 'Tlg(tZ5e') as observed experimentally, while on the other 
hand the net activity of ITlg plus lTZg vanishes, contrary to 
experiment. The more recent crystal field are 
worked out along the lines of Tinoco" where nonligating 
groups present themselves as perturbers, and net activity is 
obtained by these. Of course the ideal model ought to 
account for the sign and magnitude of the net activity of spin- 
allowed, one-electron excitations in addition to predicting 
the signs and magnitudes of the trigonal components of the 
magnetically allowed T parent. However, if the latter condi- 
tion can be met by a bonding model, then it is successful in 
relating absolute configuration to the CD spectrum given the 
knowledge of the polarizations of these components from a 
crystal spectrum containing even the racemate. On the other 
hand, having a model which can also predict unfailingly the 
net rotational strength of the one-electron, spin-allowed 
excitations or at least the sign of the net activity of the 
magnetically allowed parent (4T2g and 'Tlg of C r ( e r ~ ) ~ ~ "  and 
C ~ ( e n ) ~ ~ + ,  respectively) is a somewhat more ambitious goal. 
A model of the latter type would free one from even having 
to know the polarization of components of the magnetically 
allowed parent. However, it is most realistic at this stage of 
large-molecule quantum chemistry to search for a general 
MO model which can relate absolute configuration to the 
CD signs of trigonal components whose polarizations are 
known. Here we apply our MO procedure toward C ~ ( e n ) ~ ~ +  
and C r ( e r ~ ) ~ ~ +  for excitations to 'Tlg(t2'e1) and 4T2g(tz3e1), 
respectively, although in principle it applies equally well to 
charge-transfer and ligand internal excitations. 

Computational Work 
1 .  Basis Set and Atomic Orbitals. The valence orbitals 

of M (Co or Cr), C, N, and H were chosen to make up the 
A 0  basis set of M ( ~ I I ) ~ ,  i.e., 3d, 4s, and 4p for M ,  2s and 2p 
for C and N,  and 1s for M. From previous experience16 in 
this laboratory it was found that the single-{ orbitals of 
Glementi and Raimondi" are very nearly as good as the 
double-{ ones18 for lighter atoms, e.g., C and N.  This con- 
clusion derives from computing two-center and three-center 
electric dipole moment integrals and overlap integrals." 
These single-{ exponents were therefore chosen for the 
present calculation. and {(ls) for H was givenl9 the value 
1.2. The 3d radial functions of Co' were used as given by 
Kchardson. Nieuwpoort, Powell, and Edgell" without 
modification in view of previous experience by Fenske and 

Evans, Schreiner, and Hauser 

(10) D. J .  Caldwell and H. Eyring, "The Theory of Optical 
Activity." Wiley-Interscience, New York, N. Y., 1971. 

(11 )W.  Moffitt,  J. Chem. Phys., 25, 1189  (1956). 
(12) S. Sugano, J. Chern. Phys., 33, 1883 (1960). 
(13) T.  S. Piper and A. Karipides,Mol. Phys., 5, 475 (1962). 
(14) H. Poulet, J. Chim. Phys., 5 9 ,  584 (1962). 
(15)  I. Tinoco,Advan. Chem. Phys., 4, 113 (1962). 
(16) R. S. Evans, P. J .  Hauser, and A. F. Schreiner, Inorg. Chem., 

(17)  E. Clementi and D. L. Raimondi,J.  Chem. Phys., 38, 2686 

(1 8) E. Clementi, "Tables of Atomic Functions," a supplement t o  

(19) W. E. Palke and W. N. Lipscomb, J.  Amer. Chem. SOC., 88,  

(20)  3 .  W. Richardson, W. C. Nieuwpoort, R .  R .  Powell, and W. F. 

13, 901 (1974). 

(1 96 3). 

E. Clementi, IBM J. Res. Develop., 9, 2 (1965). 

2384 (1966). 
Edgell, J. Chem. Phys., 36, 1 0 5 7  (1962). 

Figwe 1.  Azimuthal ($) and polar ( e )  angles of the tris chelate, 
ML,, as measured in the xy plane, the plane of the three C, axes; 
L, and L, are the two coordinated atoms of one bidentate ligand. 
The molecular C, axis is coincident with the z axis, and 8 is the an- 
gle between the z axis and the M-L, , M-L,, or M-L, position vec- 
tor. 

Radtke.21 4s and 4p functions, however, were overlap- 
optimized for the Co-N bond and made orthogonal to the 
core orbitals ( Is ,  2s9 2p, 3s, 3p) of Co as previously 
The results are 
$(4~)=-0.02323({,, ~ 2 6 . 3 7 5 )  + 0.07855(f2s= 10.175)- 

0.19388(f3,=4.690) C 1.01541({4,= 1.525) 
$'(4p) = O.O5348({2, = 11.050)- 0.18667({3, = 4.385) + 

1 .O 15 64({4, = 1.450) 
The bond distances and angles were taken from the X-ray 
study of D-cO(en)&r3 . H 2 0  by N a k a t ~ u ~ ~  and averaging 
was carried out so as to obtain exact D3 molecular symmetry. 
The HCH and HNH dihedral angles (both 109.5') and the 
N-H and C-H bond distances (1.02 and 1.09 A, respectively) 
were added to this structure, The azimuthal ($) and polar 
( e )  angles, defined in Figure 1 for the tris chelate ML6, qre 
29.8 and 55 .0°9 respectively. The single-crystal X-ray 
crystallography of a salt of C r ( e r ~ ) ~ ~ '  has not been published 
as yet; however, in view of the nearly identical sizes of chro- 
mium(II1) and cobalt(II1) i o d 4  and the probably constant 
"bite size"25*26 of the ethylenediamine molecule, the same 
molecular parameters were employed for A-lel-Cr(en)33+ and 
A-lel-C~(en),~'. Following our very large computer costs 
for development and detailed computations on C ~ ( e n ) ~ ~ + ,  
the operator matrices of the latter are used for the chromium 
analog, although MO's of the two ions were still generated 
separately. This approximation is not serious, since the 
radial expansions20,22 of 4s, 4p, and 3d orbitals are similar 
for Co" and Cr'. le1 + ob geometry changes were made by 
moving C and H atoms. 

2. Moleeular Orbitals. Wi le  the AO's of any one atom 
are orthonormal here, the basis set as a whole is oblique. 
Therefore, the secular equation [H - ES]C = 0 of the oblique 
set (S fi I) has to be cast into standard eigenproblem form, 
[M - E]T = 0, for solution. This can be done by conven- 
tional matrix since the overlap matrix, S, is the 
Hermitian positive-definite metric of the oblique basis. The 
MO coefficient matrix, C ,  of the oblique A 0  basis is finally 
needed in our procedure because we need to transform the 
operator matrices of the oblique A 0  basis into MO space. 

(21) R. F. Fenske and D. D. Radtke,  Inovg. Chem., 7, 479 (1968). 
(22)  J ,  W. Richardson, K.  R. Powell, and W. C. Nieuwpoort, J.  

(23) K. Nakatsu,BulE. Chem. SOC. Jap., 35, 832 (1962). 
(24) L. Pauling, "The Nature of the Chemical Bond," 3rd ed, 

(25) D. L. Kepert, Inorg. Chem., 11, 1562 (1972). 
(26) E. I. Stiefel and G. F. Brown, Inovg. Chem., 11, 434 (1972). 
(27)  F. E. Hohn, "Elementary Matrix .4lgebra," 2nd ed, Macmillan, 

Chem. Phys., 38, 769 (1963). 

Cornell University Press, Ithaca, N. Y., 1960. 

New York, N. Y., 1964. 
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C will be obtained from the transformation C = PT, where 
T is easily found since it diagonalizes M. In turn, M is 
related to the (known) Hamiltonian matrix, H, by M = 
P-lHP, and P = The unitary matrix, U, of the last 
equation diagonalizes S, and S-”2 derives2’ from t h s  diag- 
onalized form of S. Therefore, once P and T are derived, one 
obtains C from the equation C = PT. The inverse, T = P-’C, 
is sometimes termed the Lowdin transformation.28 A pre- 
viously based practice for obtaining MO’s for large molecules 
was followed; i .e.,  the diagonal elements of the Hamiltonian 
matrix, H, for the metal (M) and ligand (L 3 C, H, N) were 
taken as Hii(M) = -Eldl and Hji(L) = - (AQL2 + BQL + C )  
where Vl is the valence orbital ionization energy (VOIP)29 
of the Zth electronic configuration of the metal, and all other 
constants and features of the procedure are given in ref 29. 
Off-diagonal elements were obtained by using the Wolfsberg- 
Helmholz equation3’ with K = 1.9. Iterations are carried 
out until self-consistent charges, Q (Mulliken31 method using 
C) or Q’ (density matrix using T), will result, where for atom 
A 
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and 

2, is the charge of the atomic core and the other symbols 
in the present notation can be found elsewhere.32 

3. Overlap Integrals (Sjj = (xilxj)). The overlap matrices, 
S, were obtained by using subroutine INTE (QCPE, Program 
82.1) of Y e r a n ~ s . ~ ~  This subroutine as received from QCPE 
was made accurate for large internuclear distances and large 
{ by extending the number o f  B functions, Bk(t), to be used 
for each integral from the fixed number, 10, to such a number, 
n ,  so that another term,B,+,(t), would contribute only 
or less to the sum of terms preceding it. The routine is the 
coding of formulas by Kuppermann, Karplus, and IsaacsonM 
over single-{ STO’s. Since this subroutine evaluates the 
integrals in the aligned coordinate system of Figure 2a, it was 
necessary to express the atomic orbitals of the molecular 
orbital coordinate system (Figure 2b) as linear combinations 
of aligned atomic orbitals (Figure 2a); i .e.,  for the sets of 
pm and d, orbitals in the molecular coordinate system m 

P m  - A p P a  
- 

d, = Bdd, 

where pa and d, are the orbitals in the aligned coordinate 
system. The transformation matrices A and B were derived 
using the Euler angles and Goldstein matrices35 in the conven- 
tional manner. A typical overlap integral of the uth oblique 
orbital on atom A and the vth orbital on atom B becomes 

( x U ( A )  iXU(B)) = (&ZiX’i(A) I?bjx’j(B)) 
I 

(28) P. 0. Lowdin,J.  Chew. Phys., 18, 365 (1950). 
(29) H. Basch, A. Viste, and H. B. Gray, Theoret. Chim. Acta, 3, 

(30) M. Wolfsberg and L. Helmholz, J. Chem. Phys., 20, 837 

(31) R. S. Mulliken,J. Chem. Phys., 23, 1833 (1955). 
(32) A. F. Schreiner and T.  L. Brown, J. Amer. Chem. Soc., 90, 

(33) W. A. Yeranos, “INTE,” Quantum Chemistry Program 

(34) A. Kuppermann, M. Karplus, and L. M. Isaacson, Z. 

(35)  H. Goldstein, “Classical Mechanics,” Addison-Wesley, Reading, 

458 (1965) .  

(1952). 

3366 (1968). 

Exchange No. 82.1. 

Naturforsch. A ,  14, 311 (1959). 

Mass., 1950. 

ZM 

1 

(b) 
Figure 2. (a) Aligned coordinate system (XA Y A ,  ZA) and (b) lo- 
cal molecular coordinate system (X‘, Y M, Z ); the two are related 
by angles 6 and @ of the figure (see text).- 

where x’ terms are aligned orbitals computed with INTE. 
4. Distance Integrals, (xi Ifla). The one-center and several, 

but not all, types of two-center dipole distance integrals 
were also evaluated with INTE. Hoyever, in order to evaluate 
three-center integrals such as (xi(C) k (M)  I xj(B)), the operator 
on the metal center, M, was transformed onto center B. This 
had the effect of changing every three-center moment integral 
into a linear combination of two-center integrals. This 
transformation can be carried out for the general case by 
recognizing that the coordinates of an electron with respect to 
center A can also be expressed with respect to those of center 
B, and the relationship is shown in Figure 3. These coor- 
dinates, in fact, are related geometrically by 

X A = X B  + R  sin 6 cos q5 

YA =YB f R  sin6 sin@ 

ZA =ZB f R  COS 6 

where e,@, and R are defined by the geometry of the com- 
plex. An example for which centers M and B are separated 
by distance R 

(xj(c)i;(M) IX~(B)) = (xi(c) IX(B) IX~(B) t 
R sin 6 cos q5(xi(C) lyi(B)) 

where B, C, and M are different atoms, is a general statement 
of this three-center to two-center reduction by these identity 
transformations. 

5 .  Velocity Dipole Integrals, (xi 6/a4  lxj) (4 = x ,  y ,  or z ) .  
The alternative method, which employs the differential 
operator 0, = a& (4 = x ,  y ,  or z ) ,  was explored For comput- 
ing electric dipole transition moment integrals in place of 
the distance operator, r = x + y + z .  For example, for the 
z component of transition a + j, one has 

-h2 8 
(aiz”Ij) = (a i-lj) 

m2(Ea -Ej) az 

Using 0, in this manner has been termed the velocity dipole 
procedure, and experimental energy differences were em- 
ployed here to compute such dipole strengths, D. The 
integrals of the velocity dipole operator were evaluated by 
first deriving the analytical functions obtained by operating 
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Y A = Y B + R S I N O S I N Q ,  

Z A = Z B + R C Q S 8  

Figure 3. Position coordinates of an electron with respect to two atoms, A and B. 

on the oblique atomic orbital, x, in the manner, G I ~ } ,  This 
action creates one or several new functions. For example 

Next, the integration can be carried out; i.e. 

constant X overlap integral 

Care is required in the final steps, since the action $ ix) can 
create strange orbitals like “2dxZ” of the example here. The 
orbitals of bra and ket are finally transformed into linear 
combinations of aligned orbitals recognized by IPTE. 

integrals are a bit easier to formulate once one has w2rked 
out the formalism of the velocity dipole operations, v Ix). 
The procedure for evaluating a nitrogcn-metal-carbon three- 
center integral,J, where J =  (2py(N)~Lz(Co)12p,(Co)), is 
representative and exemplary of the computational steps 
necessary for constructing the orbital angular momentum 
matrix, L. First, the operator is transformed from Co to 
the carbon atom, C. This will have the convenient effect of 
changing J into a linear combination of two-center integrals. 
In general, since 

6. Orbital Angular Momentum Integrals, (xi iLIxj). These 

needs to be transformed to carbon, C, it is necessary again 

to know that 
Xco = Xc + Rco-c sin B cos @ 

Yco = Yc + Rco-c sin B cos @ 

This follows directly from Figure 3, and the angles are defined 
by 

zc -zco 
Rco-c 

yc - yco 
X C  -xco 

0 =cos-l ( ) 
@ = tan-’ ( ) 
After substituting these expressions for B and @ into those of 
XC, and Yco and putting the explicit form of Xc0 and Yc, 
into integral J ,  one obtains 

Substitution of this expression into J then gives 
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Next, we operated to the right in each of the four terms so 
as to create new oblique atomic functions from each opera- 
tion. The final result is that one can evaluate each of these 
four terms as a linear combination of overlap integrals. For 
the integral above we obtain -0,497831' BM when the follow- 
ing input is used, 

Coordinates. A 
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integral divided by e/2mc, and ImGp + ih) equals h. (M) 
is evaluated by means of the electronic position, or distance, 
operator, r =x + y  + z, or the velocity dipole operator,' 
e.g. 

~ 

X Y 2 
C 2.15 144 -0.51988 0.56800 
N 1.42160 -0.81507 1.14661 
co  0.0 0 .o 0.0 

The carbon and nitrogen orbitals are 
~ ( c ; p )  =~e-'*5679' 

R(N;p) =&-1.9170r 

and the overlap integrals were evaluated with INTE. Other 
integrals of L were evaluated similarly. 

7 .  Wave Functions of States. The state functions are 
constructed in the following manner, using Cr(en)33+ as an 
example. Individual determinants, A, are written which 
represent all the possible trigonal electron configurations 
of octahedral parentage tZ3 and tZ:eg'. The components 
of A are the ground-state and virtual D3 molecular orbitals, 
originating from C3 quantization. The symmetry behavior 
of these simple determinants, A, is then ascertained under 
the D3  grolip operations, C3 and Cz. This is carried out by 
operating on the trigonal, C3-quantized MO's making up 
these determinants, A. Next, the set of determinants, {A}, 
is simply combined so as to construct symmetry functions, 
r, which form representations of point group D3 in C3 
quantization. Each F, of states 4A1 and 4Az and two sets 
of 4E for Cr(en)33c is, in fact, a linear combination of deter- 
minants, A .  Finally, it is also necessary to decide how to 
mix the r functions of E states, e.g., r(4E) and I''(4E), in 
order to arrive at final state functions \k(4E,T1) and \k- 
(4E,Tz) whose genealogies are 4T1 and 4Tz of Cr(en)33+. 
The above procedure is equally valid for the cobalt analog, 
recognizing that six-electron, singlet spin states are required 
for Co(II1). 

The last step mentioned can be accomplished either by 
computing state energies: e.g., for C ~ ( e n ) ~ ~ + ,  'E(T1) < 'E- 
(T2), or by evaluating some property36 clearly to be associated 
with T1 or Tz and admitting that components of these latter 
constitute the E functions of D3 symmetry. We followed 
the second path by making use of the octahedral properties 
(1AlglL(4)11TZg) = 0 and (4AzglL(4)14Tlg) = 0 for C ~ ( e n ) ~ ~ +  
and C~(en)$~+, respectively, where L =L,  + L ,  + L,. For 
this purpose one again generates operator matrices, L,(4 I ,  
Ly(4), and this time using C4 quantization. Finally, 
MO's are transformed from C3 quantization to C4 quantiza- 
tion, giving the eigenvector matrix Cc4) to be used for evaluat- 
ing the properties named above. 

8. Rotational (R) and Dipole (0) Strengths. The rota- 
tional strength,R(a + j), and dipole strength, D(a + j), were 
computed'' in dot product manner for transition a + j ,  Le. 

D ( a + j ) = e Z ( a l ~ I j ) . ( j I ~ l a )  

where (M) is the electric dipole transition moment integral 
divided by e ,  (L) the magnetic dipole transition moment 

L is the usual orbital angular momentum operator. Our 
units of R and D are cgs and Dz , respectively. 
Results and Discussion 

We will first discuss CD results (distance, r,  and velocity 
dipole, V, operators) of the magnetic dipole allowed parent 
excitation, 'Alg(tZ6) + 'Tlg(tZ5e'), for A-lel-(+)-C~(en)~~+. 
The electric dipole strength will then be taken up using 
operators r and V ,  The possibility of employing more 
economic, but defective, operator matrices (v, r, and L) will 
also be explored. The rotational and dipole strengths of 
A - ~ b - C o ( e n ) ~ ~ +  will then be compared. Finally, we discuss 
the rotational and dipole strengths of the magnetically allowed 
excitation 4Azg + 4Tzq(tzze') of the d3 case A-lel-Cr(en)33'. 

The pertinent experimental information about C ~ ( e n ) ~ j +  
is as follows. From the oriented-crystal, c-axis CD spectrum 
of (+)- [(C~(en)~)Cl~],  *NaCl.6Hz0, as measured by McCaffery 
and one has that the rotational strength of the 
excitation 'Al + 'E(T1) at 475 nm is 79 X cgs. The 
value of the rotational strength of the second trigonal com- 
ponent of 'Tl(tZ5e'), or 'Al -+ 'Az(T1), is at present not 
measurable in the crystal, since the circularly polarized light 
would have to traverse a linearly dichroic medium. The 
energy order38 of these components is believed to be 'E < 
'AZ. The X-ray structural analyses of D-  [ ( C ~ ( e n ) ~ ) C l ~ ] ~  .Na- 
Cl.6Hz0, where D E (+), by Nakatsu, Shiro, Saito, and 
K ~ r o y a , ~ '  and D- [Co(en),]Br3 .HzO by Nakatsuz3 clarify 
that in crystals of the D ,  or (+), complex, one is working 
with the A-le1 conformation. Our calculations are carried 
out on this le1 conformer of the A isomer. The solution 
CD is known to be much weaker than the 'E(T1) compo- 
nent in the crystal, and Mason measured 4.2 X and 
-0.24 X cgs for the rotational strengths of 'E(Tl) 
and 'Az(Tl). The CD extrema of these two bands are 
at 493 and 428 nm but from other crystal measurements 
of Dingle:' Denning?l and Dingle and Ballhausen4' one 
knows that this -3-kK separation in the CD is only apparent 
and much larger than the actual trigonal splitting of ITlg; Le., 
the observed room-temperature solution CD spectrum is the 
net activity of two overlapping bands of opposite sign. The 
low CD activity of solutions of A - c ~ ( e n ) ~ ~ +  may also be the 
result of this postulated mutual cancelation of the larger 
activities of 'E and 'Az (vide infra). This effect is quite 
commonly encountered in magnetic circular dichroism 
~pectroscopy?~ i.e., the positive and negative lobes of the 
Faraday A term in medium fields are separated by hundreds 
of wave numbers and their heights are small, even though 
the two Zeeman components giving rise to the A term are 
much more intense and their energies differ by only -1  
cm-' . 

(37) A. J .  McCaffery and S. F. Mason,Mol. Phys., 6 ,  359 (1963). 
(38) A. J .  McCaffery, S. F. Mason, and R. E. Ballard, J. Chem. 

(39) K. Nakatsu, M. Shiro, Y. Saito, and H. Kuroya, Bull. Chem. 

(40) R. Dingle, Chem. Commun., 304 (1965). 
(41) R. G. Denning, Chem. Commun., 120 (1967). 
(42) R. Dingle and C. J .  Ballhausen, Kgl. Dan. Vidensk. Selsk., 

(43) A. D. Buckingham and P. J .  Stephens, Annu. Rev. Phys. 

Soc., 2883 (1965). 
Soc. Jap.,  30 ,  158  (1957). 

Mat.-Fys. Medd., 3 5 ,  No. 12,  '(1967). 
Chem., 17, 399 (1966). (36) A. Karipides, Ph.D. Thesis, University of Illinois, 1964. 
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Table I. Rotational Strengths of lTlg Trigonal Components of 
A- le lC~(en) ,~+ Using Operator Matrices I and L 

Cal- 

Evans, Schreiner, and Hauser 

Table 11. Rotational Strengths' of 'Tlg Trigonal Components of 
A- le lC~(en) ,~+ Using Operator Matrices g and L 

1 0 4 0 ~  cgs Calculation 
typeb 'W,) ' A U ,  1 1 0 4 0 ~ ,  cgs cula- 

tion 
type 'E 'A2 Type of operator matrix 

_____ 
I 50.3 -45.7 Complete 
I1 80.7 -74.1 All three-center integrals set to 

zero h 

III 71.3 -68.5 Only ( x ~ ~ l o I x ' ~ )  and ( x ~ l o l x ' ~ )  
do not vanish 

IV 58.5 -53.5 Block diagonal (one block per 
atom); orbitals of an integral 
must be on same atom 

Experimental Work 
79 Crystal of (+)-[(Co(en),)Cl,],.Na- 

C1.6H,0a 
4.2  -0.24 Solution' 

Reference 37. 

The computed results for A - l e l - C ~ ( e n ) ~ ~ +  can be found in 
Table I .  On using complete operator matrices, k and r, we 
predict that the rotational strength of the 'E trigonal com- 
ponentsR('A1 --p 'E) has a value of +50.3 X 
Thus, the model accounts for the positive sign of 'E(T1) and 
approximately for the e ~ p e r i m e n t a l ~ ~  magnitude (+79 X 

cgs). For the other trigonal component, 'A2, of 'Tlg 
we obtain R('AI -+ 'A2) = -45.7 X on using these 
complete operator matrices. While the experimental value 
of R for this second transition (to 'A2) is unknown from 
crystal data, it is known from the activity of solutions of 
the A isomer that the sign of R('Al .+ 'Az) is negative, as 
is computed here. Furthermore , since the net experimental 
rotational strength for 'Tl(tz5e') is ca. t 4  X cgs and 
the net computed R value for lTlg is $5.8 X cgs, the 
latter value (calculation I, Table I) is in good agreement with 
the e ~ p e r i m e n t a l ~ ~  one from the points of view of sign and 
magnitude. In summary, the MO model, when used with 
complete operator matrices r and k, appears to account for 
(i) the correct signs of rotation for 'E and 'A2 of ITlg, (ii) 
the correct sign of the net activity of 'E plus 'A2 of ITlg, 
(iii] the approximately correct rotational strength of the 
measurable component 'E(Tlg), and (iv) the approximately 
correct magnitude for the net activity of 'E: plus 'A2 of 'TIg. 

It is of importance to take notice of the effects on rota- 
tional strength when one uses more economic, but defective, 
operator P and L matrices by artificially annihilating certain 
types of integrals contained in complete matrices in order to 
simplify the calculation. For example, the results of calcula- 
tion I1 of Table I are obtained by setting to zero all three- 
center integrals of operator matrices L and r. This approxima- 
tion still gives the right sign and a reasonably good net 'T1 
rotational strength (6.6 X 
'A2 are overestimated by ca. 50% on the basis of results 
obtained when complete operator matrices (calculation I) 
are used. Also, the agreement between the computed 
(80.7 X IOw4' cgs) and experimental (79 X 
tional strengths for 'Al -+ 'E appears to be better than if 
complete operator matrices are employed (calculation I), 
which leads to the erroneous conclusion that the D3 wave 
functions are very good. Such an error, however, would 
remain undetected until complete operator matrices are 
used, as was done here. 

tion 111, Tab12 I) were obtained by retaining only (i) one- 
centtr, (xcolo Ixc,) ,  and (ii) one type of two-center integral, 
(xN lo IxN), of the seven-atom CoN6 fragment of A-lel-Co- 

cgs. 

cgs), but R values for 'E and 

cgs) rota- 

In another approximation, the rotational strengths (calcula- 

I 49.5 -53.7 
II 32.8 -40.2 
III 25.1 -32.3 
1V 51.8 -54.3 

See Table I for experimental values. b See Table I for identjfica- 
tion of I-IV. 

(en)33+. Again, it is found that the net value (i-2.8 X 
cgs) of R has the correct sign, as do the trigonal components 
'E and 'Az but the latter still differ from those of calculation 
I by ca. 40%. Calculation IIV is an extension of calculation 
I11 in that the operator matrices L and r of each are block 
diagonal, but the matrices of calculation IV also innclude 
carbon and hydrogen two-center integrals, or (xc  locolx '~)  
and ( IsH loco I lsH). This computational result does not 
stray far (-15%) from the complete operator calculation (I): 
so that we recommend the use of incomplete operator ma- 
trices L and r of this particular block-diagonal form for "d- 
d" transitions. The consequence of this approximation is 
that three-center integrals need not be evguated nor the 
numyous two-center ones of types (xcc loco IxL) and 
(xL loco IxiO, which involve orbitals from different atoms. 

We now wish to compare the rotational strengths as com- 
puted with operators L and r (Table K) with the ones obtained 
with operators L and V (Table 11). When complete operator 
matrices are evaluated (calculations I) the use of v and r for 
'Al .+ 'E leads to nearly identical rotational strengths, i.e., 
49.5 X and 50.3 X cgs, respectively. Excitation 
to the second trigonal component, 'Al -+ 'A2, of A-lel-Go- 
4en)33+ is predicted to be of the same negative sign and of 
about the same magnitude whether V or r is used, i.e., -53.7 
X and -45.7 X cgs, respectively. However, the 
net activity of ITlg, using V, is predicted negative (-4.2 X 

cgs), contrary to what is known from solution experi- 
m e n t ~ . ~ ~  It is most important, nonetheless, that the signs 
are the same and that the magnitudes of R are quite com- 
parable for excitations to individual trigonal components of 
the magnetically allowed transition 'Alg -+ 'Tlg. 

The consequences of using the approximate operator 
matrices v and L of Table I1 are similar to what was en- 
countered by using r and 6, matrices (Table I). Analogously, 
it is found that calculation 111, in yhich only the cob5lt and 
nitrogen L and V blocks, or ( X C ,  loco IxL,) and (XN loco I x ' ~ ) ,  
are retained, leads to ca. 50% deviations (compared to the 
values obtained by using complete matrices, calculation I) 
of the rotational strengths of trigonal components, but the 
use of r (calculation 111, Table I) leads to overestimates of 
IR 1 values, and the use of V (calculation 111, Table I) leads 
to underestimates o f  IRI values. This behavior makes it 
dangerous to compute the rotational strengths of very small 
bands by means of v and calculations of types II or 111 
(Table 11). However, the inclusion of all blocks (Co, C,  N ,  
H) in the operator matrices so as to account for the one- 
center and certain two-center expressions (calculation IV, 
Table 11) is quite acceptable, and this is economically im- 
portant to know. Overall, the use of r is recommended 
over the use of 0 since the former also predicts the correct 
net activity of 'Tlg. 

The MO model was also tested by computing the dipole 
strength of 'Al -+ '7' by means of complete operator 
matrices r and v (calculation 1, Table 111) or approximate 
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Table 111. Dipole Strengths of 'Tlg Trigonal Components of 
A-lelCo(en), 
Velocitv Diuole (V) Operators 

Using the Distance (r) and 

D,  D2 
tion type' 'E(T,) 'A,(T,) Net IT, Operator 

I 0.046 0.078 0.124 I 
0.045 0.108 0.153 V 

I1 0.066 0.115 0.181 1 
0.011 0.034 0.045 V 

111 0.052 0.098 0.149 I 
0.006 0.022 0.028 V 

IV 0.059 0.102 0.161 I 
0.046 0.105 0.151 V 

Calcula- 

0.12 (exptlb) 

a See Table I for identification of I-IV. * Reference 37. 

ones (calculations 11-IV, Table 111) as described above. The 
estimate of the experimental dipole strengths of 'TI is 
0.12 D2, and on use of the complete operator matrices r 
and V, one obtains 0.124 and 0.153 D', respectively. Even 
though the two computed answers, and especially the first 
one, are in very good agreement with e~per iment ,~ '  they 
probably overestimate the intensity because our model 
computes only the static electric dipole contributions to the 
'E and 'A2 intensities, whereas the observed intensity of 
'T1 of A-lel-C~(en),~+ probably has vibronic contribu- 
t i on~ .~ ' -~ '  

The use of approximate r matrices (calculations 11-IV) 
produces notably smaller dipole strength fluctuations (range 
0.149-0.181 D') than when approximate V matrices are 
used (range 0.028-0.151 D'). Of the three approximate 
V matrices only the one of calculation IV (0.151 D2) is near 
the value 0.153 D2 of calculation I (complete v matrix). V 
of calculation IV is block diagonal (Co, C,  N, H) as described 
above. Of the dipole strengths computed with incomplete 
r matrices, the 0.149-D' of calculation I11 (block diagonal 
in Co and N of (CON,) fragment; vide supra) and 0.161 D' 
of calculation IV (vide supra) are closest to 0.124 D2 obtained 
with the complete r matrix. 

Following the above analysis it was of interest to investigate 
how skeletal changes of -CH2CH2 - of each coordinated 
ethylenediamine in A - c ~ ( e n ) ~ ~ +  would influence the rota- 
tional strengths and electric dipole strengths of 'Al and 'E. 
Thus, we wish to compare the optical properties of the 
experimentally known A-le1(666)-C0(en)~~+, or A-lel(kkk)- 
C ~ ( e n ) ~ ~ + ,  of the crystal state, with the other extreme A- 
~b(XhX)-Co(en),~+, or A-~b(k'k'k')-Co(en)~~+, of somewhat 
higher energy.44 For this purpose we carried out the two 
computations with complete operator matrices L and rover 
all atoms (Co, C, N, H) since the use of r accounts reasonably 
successfully for the features of 'A2(T1) and 'E(T1) of A- 
l e l - C ~ ( e n ) ~ ~ + .  One notable feature of the le1 + ob conforma- 
tional change is the decrease of the absolute value of the 
rotational strengths of each trigonal component, 'E (50.3 X 

X cgs). The second point here is that the decrease of 
'E is greater (15.5%) than the increase of 'A2 (6.1%). One 
conclusion we draw from this is that the -CH2CH2- backbone 
conversion from le1 to ob decreases the CD intensity in a 
minor, but not negligible, way so that one predicts that the 
more drastic change of the (CoN6) skeleton from A to A 
structure is actually required to cause a change of the signs 
of the trigonal components of IT1. The second conclusion 

to 42.5 X cgs) and 'Az (-45.7 X to -42.9 

(44) E. J .  Corey and J. C. Bailar, J.  Amer. Chem. SOC., 81 ,  2620 
(1959). 

Table IV. Rotational (R) and Electric Dipole (0 )  Strengths of 
'E(T,) and 'A,(T,) of A-lel- and A-obCo(en), 
Operator Matrices' 

'T. (21.322 kK) 

from Complete 

'E(T,) 'A, (T, Conformation 

1 0 4 0 ~ ,  cgs 
50.3 -45.7 le1 
42.7 -42.9 ob 
79 Exptl. crystalb 

4.2 -0.24 Exptl. sohb 

D,D2 
0.046 (0.124) 0.078 le1 
0.034 (0.101) 0.067 ob 

(0.12) ExptLb 

Q Complete L and r operator matrices. b Reference 37. 

we draw from the present result is that the net integrated 
'T1 CD activity of A - ~ b - C o ( e n ) ~ ~ +  is expected to be ea. 
zero,sinceR('Al +E)=42.7X cgsandR(lA1 + 

'Az) = -42.9 X 
the model predicts no CD bands in the 'T1 region, but it 
means one ought to see two lobes of opposite sign but same 
absolute magnitude, very analogous to a pure A term in the 
Faraday MCD effect .43 This result rules out the contention 
that in solutions of the A isomer one has 100% A-ob. Piper 
and Karipides argued similarly from an experimental point 
of 
MO model applied to the CoN6 fragment also makes this 
interesting prediction. However, this attack is not the 
required strong inference experiment which can rule out the 
possibility of having a mixture of mostly A-le1 but some A-ob 
which might give rise to some of the negative CD intensity at 
430 nm in the solution of A - c ~ ( e n ) ~ ~ + .  

The changes of the computed dipole strengths, D ,  of 
'A2(T1> and 'E(T1) as the backbone change in A - c ~ ( e n ) ~ ~ +  
is made from A-le1 to A-ob closely parallel the changes of 
the rotational strengths of these components. The le1 + ob 
conversion decreases the intensity of 'E from 0.046 to 0.034 
D2 and decreases that of 'Az from 0.078 to 0.067 D'. In 
f a c t , d D m  a n d d D m d e c r e a s e  by 14.0 and 7.3%, so 
that the additional insight obtained here is that the decreases 
ofR('E) and R('A2) are largely caused by the decreases of 
the electric dipole transition moment integrals. (See Table 

cgs. This does not at all mean that 

and Richardson6 showed very recently that Liehr's 

IV.) 
It was pleasing to discover that the application of the 

abbreviated but proper three-electron-state functions for 
A-lel-Cr(en)33+ along with the complete multicenter operator 
matrices rand L led to the interpretation of the magnetically 
allowed excitation 4Az(t23) + 4Tz(tz2e'), which is nearly as 
good as using the six-electron-state functions and the same 
operators, r and L, for 'Al(tZ6) -+ 'Tl(tZ5e1) of A-lel-Co- 
(en)33+. We show in Table V that the rotational strengths 
for the one-electron excitations to the trigonal components 
4E and 4A1 are +13.5 X and -12.4 X cgs, 
respectively. It is of some surprise that the experimental 
rotational strength of the 4E component has not been pub- 
lished, and we are now in the process of measuring this 
value in crystals?6 However, the net rotational strength 
of 4T2(t22e') is known to be $4.4 X 
spectra.' The MO model, when used with the complete 
operator matrices L and r,  yields the reasonable net activity 
+I  .1 X cgs, which from the point of view of the sign 

cgs from solution 

(45) T. S. Piper and A. Karipides, J. Amer. Chem. SOC., 86, 5039 

(46) R. S. Evans and A. F. Schreiner, work in progress in this 
(1964). 

laboratory. 
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Table VI. Rotational (R)  and Electric Dipole (0) Strengths of 
'E(T, ) and 'A(T,) of h - l e l C ~ ( e n ) , ~ +  Using Complete Operator 
Matrices and MO's from a Mulliken Charge Convergence 

Table V. Rotational (I?) and Electric Dipole ( 0 )  Strengths' 
of 4E(T,) and 4A,(T,)  of A-lelCr(en),3' 

4E 4.41 Net 4T,, Operators 
104'R, cgs 

13.1 -15.1 -2.0 L, v 
13.5 -12.4 +1.1 L, r 

c4.4 Exptl. solnb 

D ,  D' 
0.005 0.014 0.019 V 
0.005 0.009 0.014 r 

0.11 Exptl. solnb 

a Complete operator matrices V, L, and I are employed for the 
computation. Reference 37. 

and magnitude is a good result. We might add that the 
model's underestimate of the rotational strength may 
actually be in its favor, since the 4T2 GD band intensity is 
probably vibronic in part and the electric dipole intensity 
definitely contains vibronic contributions?' If, in fact, R 
of 4T2 were entirely the result of the static mechanism, the 
underestimate of the computation could then probably be 
tracedhto the electric dipole transition moment integral, 
(4A2 IM lj!, of th,e Rosenfeld equation ~ -+ j) = 
Wm(4A2 IMIjNj IL 14A2)? which contains the square root of 
the dipole strength (vide infra). Here, the net dipole strength 
of 4A2 -+ 4T2 is predicted to be 0.014. D2 (Table V), which 
is too small by a factor of 10. Since the model predicts that 
the rolational strength is too small by a factor of 4, the 
electric dipole part would largely account for the difference, 
if it is assumed that all the electric dipole character of the 
dipole strength contributes to the rotational strength. How- 
ever, the temperature d e p e n d e r ~ c e ~ ~  of R(4T2) and the real 
magnitudes of azimuthal ($) and polar (6) angles need be 
established first before drawing other conclusions. 

Before concluding the discussion of Cr(en)331, it is also 
pointed out that on using the complete velocity dipole matrix, 
V, in place of r one obtains 1-13.1 X and -15.1 X 
lou4" cgs for R(4E) and R(4Ainl), respectively. Thus, the two 
operators predict nearly the same rotational strength for 
'En;;(T,>, but for 4A2 -+ 4A1(T2) operator V predicts a negative 
R value whose absolute value is 100% larger than predicted 
by operator r .  A similar difference between D and r was 
encountered for 'E(T1) and 'A2(T1) of A- le l -C~(en)~~+ as 
here; Le. ,R('E> is nearly invariant, whereas the absolute 
value ofR(lA2) is 100% larger when V is used (calculation 
I?  Tables I and 11). It is more significant, however, that the 
signs of rotational strengths of trigonal components 4E and 
4A1 of 4Tz can be computed using either operator, V or r .  

it is also worthy of mention that it matters how atomic 
charges are computed (vide supra), if one uses a convergence 
procedure to self-consistent charges. First, all computations 
as described above were carried out by using MO coefficients 

(47) .  P. J. McCarthy and M. T. Vala, Idol. Phys., 2 5 ,  1 7  (1973). 

513 

495 
49.5 

50.3 

7 . 1  
0.045 
6.6 
0.046 

'A, (TI)  Convergence Operators 
104017,' cgs 

-391 hfulliken L, v 
-53.7 Lowdin L, Q 

L, r 
-45.7 Lowdin L, r 

9.5 Mulliken v 
0.108 Lowdin V 

Mulliken 9.1 r 
0.078 Lowdin r 

Mulliken -383 

D,b DZ 

a See Table I for experimental values of R. b D('T,)  = 0.12 D2. 

of self-consistent "Lowdin" charges or 
m o  A 

h i  
QIA = Z ,  - Z: Z:nktZik 

(vide supra) where t is a component of the eigenvector matrix, 
T, of Lowdin orthonormalized AO's ([M - E]T = 0). This 
procedure was followed because of an earlier discovery in this 
laboratory that it led to the best set of permanent electric 
dipole moments for several chromium16 and manganese com- 
plexes. During the present study it was found that the use of 
molecular orbitals obtained by converging on Mulliken charges 
(QA of "molecular orbitals," vide supra) overestimated the 
dipole strength of IT1 of A - c ~ ( e n ) ~ ~ +  by 2 orders of magni- 
tude (Table VI). This tenfold overestimate of the unsquared 
electric transition moment integrals entering the dipole 
strength calculation is also directly responsible for the ten- 
fold overestimate of the net rotational strength of 'T1 
(Table VI). The position, r,  and velocity dipole, Q, operators 
yield very similar dipole strengths and rotational strengths 
(Table VI). Clearly the MO's of the Mulliken charge con- 
vergence predict excited-state electric dipole moments which 
are 10 times too large. There is perhaps a little less ambiguity 
about "Lowdin" charges, since one does not arbitrarily 
divide a quantity such as Mulliken's overlap population, 
2C;:,Cj,Sij, of the kth singly occupied spin orbital, equally 
between unlike atoms. 

This MO model is now under continued scrutiny to deter- 
mine if it can account for the CD features of complexes cis- 
T ~ f ( e n ) ~ L ~ ,  M(ox)~,  and c i s - M ( o ~ ) ~ L ~ .  
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